wip
This commit is contained in:
parent
bf16f740cd
commit
0990821d6d
1 changed files with 22 additions and 22 deletions
|
@ -10,6 +10,28 @@ import shutil
|
||||||
|
|
||||||
OUTDIR = "chunks_unprocessed"
|
OUTDIR = "chunks_unprocessed"
|
||||||
PROCESSED_DIR = "chunks_processed"
|
PROCESSED_DIR = "chunks_processed"
|
||||||
|
CHUNK_SECONDS = 1
|
||||||
|
TOLERANCE = 1
|
||||||
|
OVERTONE_TOLERANCE = TOLERANCE * 2
|
||||||
|
THRESHOLD_BASE = 0.5
|
||||||
|
THRESHOLD_OCT = THRESHOLD_BASE / 10
|
||||||
|
CLIP_PADDING_BEFORE = 1
|
||||||
|
CLIP_PADDING_AFTER = 6
|
||||||
|
TARGET_FREQ = 211
|
||||||
|
OVERTONE_FREQ = TARGET_FREQ * 2
|
||||||
|
NFFT = 32768
|
||||||
|
SKIP_SECONDS = 10
|
||||||
|
|
||||||
|
def detect_event(chunk):
|
||||||
|
freqs, times, Sxx = scipy.signal.spectrogram(chunk, samplerate, nperseg=NFFT)
|
||||||
|
idx_base = np.where((freqs >= TARGET_FREQ - TOLERANCE) & (freqs <= TARGET_FREQ + TOLERANCE))[0]
|
||||||
|
idx_oct = np.where((freqs >= OVERTONE_FREQ - OVERTONE_TOLERANCE) & (freqs <= OVERTONE_FREQ + OVERTONE_TOLERANCE))[0]
|
||||||
|
if len(idx_base) == 0 or len(idx_oct) == 0:
|
||||||
|
return False
|
||||||
|
base_energy = np.mean(Sxx[idx_base])
|
||||||
|
oct_energy = np.mean(Sxx[idx_oct])
|
||||||
|
total_energy = np.mean(Sxx, axis=0).max()
|
||||||
|
return base_energy > THRESHOLD_BASE * total_energy and oct_energy > THRESHOLD_OCT * total_energy
|
||||||
|
|
||||||
def process_chunk(filename):
|
def process_chunk(filename):
|
||||||
input_path = os.path.join(OUTDIR, filename)
|
input_path = os.path.join(OUTDIR, filename)
|
||||||
|
@ -20,33 +42,11 @@ def process_chunk(filename):
|
||||||
if data.ndim > 1:
|
if data.ndim > 1:
|
||||||
data = data[:, 0] # nur Kanal 1
|
data = data[:, 0] # nur Kanal 1
|
||||||
|
|
||||||
CHUNK_SECONDS = 1
|
|
||||||
TOLERANCE = 1
|
|
||||||
THRESHOLD_BASE = 0.5
|
|
||||||
THRESHOLD_OCT = THRESHOLD_BASE / 10
|
|
||||||
CLIP_PADDING_BEFORE = 1
|
|
||||||
CLIP_PADDING_AFTER = 6
|
|
||||||
TARGET_FREQ = 211
|
|
||||||
OVERTONE_FREQ = TARGET_FREQ * 2
|
|
||||||
NFFT = 32768
|
|
||||||
SKIP_SECONDS = 10
|
|
||||||
|
|
||||||
chunk_samples = int(CHUNK_SECONDS * samplerate)
|
chunk_samples = int(CHUNK_SECONDS * samplerate)
|
||||||
skip_samples = int(SKIP_SECONDS * samplerate)
|
skip_samples = int(SKIP_SECONDS * samplerate)
|
||||||
padding_before = int(CLIP_PADDING_BEFORE * samplerate)
|
padding_before = int(CLIP_PADDING_BEFORE * samplerate)
|
||||||
padding_after = int(CLIP_PADDING_AFTER * samplerate)
|
padding_after = int(CLIP_PADDING_AFTER * samplerate)
|
||||||
|
|
||||||
def detect_event(chunk):
|
|
||||||
freqs, times, Sxx = scipy.signal.spectrogram(chunk, samplerate, nperseg=NFFT)
|
|
||||||
idx_base = np.where((freqs >= TARGET_FREQ - TOLERANCE) & (freqs <= TARGET_FREQ + TOLERANCE))[0]
|
|
||||||
idx_oct = np.where((freqs >= OVERTONE_FREQ - TOLERANCE) & (freqs <= OVERTONE_FREQ + TOLERANCE))[0]
|
|
||||||
if len(idx_base) == 0 or len(idx_oct) == 0:
|
|
||||||
return False
|
|
||||||
base_energy = np.mean(Sxx[idx_base])
|
|
||||||
oct_energy = np.mean(Sxx[idx_oct])
|
|
||||||
total_energy = np.mean(Sxx, axis=0).max()
|
|
||||||
return base_energy > THRESHOLD_BASE * total_energy and oct_energy > THRESHOLD_OCT * total_energy
|
|
||||||
|
|
||||||
i = 0
|
i = 0
|
||||||
last_event = -skip_samples
|
last_event = -skip_samples
|
||||||
while i + chunk_samples <= len(data):
|
while i + chunk_samples <= len(data):
|
||||||
|
|
Loading…
Reference in a new issue