initial commit
This commit is contained in:
commit
2cdb0235c5
3 changed files with 162 additions and 0 deletions
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
*.png
|
||||
*.flac
|
||||
*.wav
|
52
create_chunks.py
Normal file
52
create_chunks.py
Normal file
|
@ -0,0 +1,52 @@
|
|||
#!/usr/bin/env python3
|
||||
import os
|
||||
import subprocess
|
||||
import datetime
|
||||
import pytz
|
||||
|
||||
OUTDIR = "chunks_unprocessed"
|
||||
DURATION = 10800 # 3 Stunden
|
||||
SOURCE = "pulse" # funktioniert mit PulseAudio
|
||||
|
||||
os.makedirs(OUTDIR, exist_ok=True)
|
||||
|
||||
def get_next_section_start(now):
|
||||
hour = now.hour
|
||||
next_boundary = (hour // 3 + 1) * 3
|
||||
if next_boundary >= 24:
|
||||
next_time = now.replace(day=now.day, hour=0, minute=0, second=0, microsecond=0) + datetime.timedelta(days=1)
|
||||
else:
|
||||
next_time = now.replace(hour=next_boundary, minute=0, second=0, microsecond=0)
|
||||
return next_time
|
||||
|
||||
def record_section():
|
||||
tz = pytz.timezone("Europe/Berlin")
|
||||
now = datetime.datetime.now(tz)
|
||||
timestamp = now.strftime("%Y%m%d-%H%M")
|
||||
filename = os.path.join(OUTDIR, f"{timestamp}.flac")
|
||||
print(f"🎙️ Starte Aufnahme: {filename}")
|
||||
|
||||
next_start = get_next_section_start(now)
|
||||
duration_seconds = int((next_start - now).total_seconds())
|
||||
|
||||
cmd = [
|
||||
"ffmpeg",
|
||||
"-f", "pulse",
|
||||
"-i", "alsa_input.usb-HANMUS_USB_AUDIO_24BIT_2I2O_1612310-00.analog-stereo",
|
||||
"-ac", "1",
|
||||
"-ar", "96000",
|
||||
"-sample_fmt", "s32",
|
||||
"-t", str(duration_seconds),
|
||||
"-c:a", "flac",
|
||||
"-compression_level", "12",
|
||||
filename
|
||||
]
|
||||
subprocess.run(cmd)
|
||||
print(f"✅ Aufnahme abgeschlossen: {filename}")
|
||||
|
||||
def main():
|
||||
while True:
|
||||
record_section()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
107
process_chunks.py
Executable file
107
process_chunks.py
Executable file
|
@ -0,0 +1,107 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Erkennt 211 Hz + 422 Hz (Oberton) in WAV-Dateien.
|
||||
Speichert WAV + PNG nur bei Erkennung.
|
||||
Blockiert Folgetreffer für definierte Zeit (SKIP_SECONDS).
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
from scipy.fft import fft, fftfreq
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
|
||||
# === Konfiguration ===
|
||||
FILENAME = "1b.flac"
|
||||
TARGET_FREQ = 211
|
||||
OCTAVE_FREQ = TARGET_FREQ * 2
|
||||
TOLERANCE = 1
|
||||
THRESHOLD_BASE = 0.3
|
||||
THRESHOLD_OCT = THRESHOLD_BASE / 10
|
||||
CHUNK_SECONDS = 2
|
||||
CLIP_PADDING_BEFORE = 2
|
||||
CLIP_PADDING_AFTER = 8
|
||||
SKIP_SECONDS = 10
|
||||
OUTDIR = "events"
|
||||
|
||||
os.makedirs(OUTDIR, exist_ok=True)
|
||||
|
||||
# === WAV/Audio-Datei laden ===
|
||||
data, rate = sf.read(FILENAME, dtype='float32')
|
||||
if data.ndim > 1:
|
||||
data = data.mean(axis=1)
|
||||
|
||||
samples_per_chunk = int(rate * CHUNK_SECONDS)
|
||||
total_chunks = len(data) // samples_per_chunk
|
||||
|
||||
detections = []
|
||||
next_allowed_time = 0 # für Skip-Logik
|
||||
|
||||
# === Analyse-Loop ===
|
||||
for i in range(total_chunks):
|
||||
timestamp = i * CHUNK_SECONDS
|
||||
if timestamp < next_allowed_time:
|
||||
continue
|
||||
|
||||
segment = data[i * samples_per_chunk : (i + 1) * samples_per_chunk]
|
||||
if len(segment) == 0:
|
||||
continue
|
||||
|
||||
freqs = fftfreq(len(segment), d=1/rate)
|
||||
fft_vals = np.abs(fft(segment))
|
||||
|
||||
pos_mask = freqs > 0
|
||||
freqs = freqs[pos_mask]
|
||||
fft_vals = fft_vals[pos_mask]
|
||||
|
||||
peak_freq = freqs[np.argmax(fft_vals)]
|
||||
peak_mag = np.max(fft_vals)
|
||||
|
||||
# Energien normiert
|
||||
mask_base = (freqs >= TARGET_FREQ - TOLERANCE) & (freqs <= TARGET_FREQ + TOLERANCE)
|
||||
energy_base = np.mean(fft_vals[mask_base]) / peak_mag
|
||||
|
||||
mask_oct = (freqs >= OCTAVE_FREQ - TOLERANCE) & (freqs <= OCTAVE_FREQ + TOLERANCE)
|
||||
energy_oct = np.mean(fft_vals[mask_oct]) / peak_mag
|
||||
|
||||
is_peak_near_target = TARGET_FREQ - TOLERANCE <= peak_freq <= TARGET_FREQ + TOLERANCE
|
||||
detected = is_peak_near_target and energy_base > THRESHOLD_BASE and energy_oct > THRESHOLD_OCT
|
||||
|
||||
if detected:
|
||||
detections.append((timestamp, round(energy_base, 4), round(energy_oct, 4), round(peak_freq, 2)))
|
||||
next_allowed_time = timestamp + SKIP_SECONDS
|
||||
|
||||
# Ausschnitt extrahieren
|
||||
start = max(0, int((timestamp - CLIP_PADDING_BEFORE) * rate))
|
||||
end = min(len(data), int((timestamp + CLIP_PADDING_AFTER) * rate))
|
||||
clip = (data[start:end] * 32767).astype(np.int16)
|
||||
|
||||
base_filename = os.path.join(OUTDIR, f"event_{int(timestamp):04}s")
|
||||
wav_name = f"{base_filename}.wav"
|
||||
png_name = f"{base_filename}.png"
|
||||
|
||||
# WAV speichern
|
||||
sf.write(wav_name, clip, rate, subtype="PCM_24")
|
||||
print(f"🟢 WAV gespeichert: {wav_name} (211Hz: {energy_base:.4f}, 422Hz: {energy_oct:.4f}, Peak: {peak_freq:.1f} Hz)")
|
||||
|
||||
# PNG Spektrogramm
|
||||
plt.figure(figsize=(10, 4))
|
||||
# Verstärke das Signal künstlich, um schwache Ereignisse im dB-Spektrum sichtbarer zu machen
|
||||
plt.specgram((clip / 32767.0), NFFT=32768, Fs=rate, noverlap=512, cmap="plasma", vmin=-80, vmax=-35)
|
||||
plt.title(f"Ereignis @ {timestamp:.2f}s")
|
||||
plt.xlabel("Zeit (s)")
|
||||
plt.ylabel("Frequenz (Hz)")
|
||||
plt.ylim(0, 1000)
|
||||
plt.colorbar(label="Intensität (dB)")
|
||||
plt.tight_layout()
|
||||
plt.savefig(png_name)
|
||||
plt.close()
|
||||
print(f"📷 PNG gespeichert: {png_name}")
|
||||
|
||||
# === Zusammenfassung ===
|
||||
print("\n🎯 Erkennungen:")
|
||||
for ts, eb, eo, pf in detections:
|
||||
print(f"- {ts:.2f}s | 211Hz: {eb} | 422Hz: {eo} | Peak: {pf:.1f} Hz")
|
||||
|
||||
if not detections:
|
||||
print("→ Keine gültigen Ereignisse erkannt.")
|
Loading…
Reference in a new issue