This commit is contained in:
CroneKorkN 2025-05-30 19:34:11 +02:00
parent 38faeedee1
commit 630bcf3fc4
Signed by: cronekorkn
SSH key fingerprint: SHA256:v0410ZKfuO1QHdgKBsdQNF64xmTxOF8osF1LIqwTcVw

View file

@ -1,107 +0,0 @@
#!/usr/bin/env python3
"""
Erkennt 211 Hz + 422 Hz (Oberton) in WAV-Dateien.
Speichert WAV + PNG nur bei Erkennung.
Blockiert Folgetreffer für definierte Zeit (SKIP_SECONDS).
"""
import numpy as np
import soundfile as sf
from scipy.fft import fft, fftfreq
import matplotlib.pyplot as plt
import os
# === Konfiguration ===
FILENAME = "1b.flac"
TARGET_FREQ = 211
OCTAVE_FREQ = TARGET_FREQ * 2
TOLERANCE = 1
THRESHOLD_BASE = 0.3
THRESHOLD_OCT = THRESHOLD_BASE / 10
CHUNK_SECONDS = 2
CLIP_PADDING_BEFORE = 2
CLIP_PADDING_AFTER = 8
SKIP_SECONDS = 10
OUTDIR = "events"
os.makedirs(OUTDIR, exist_ok=True)
# === WAV/Audio-Datei laden ===
data, rate = sf.read(FILENAME, dtype='float32')
if data.ndim > 1:
data = data.mean(axis=1)
samples_per_chunk = int(rate * CHUNK_SECONDS)
total_chunks = len(data) // samples_per_chunk
detections = []
next_allowed_time = 0 # für Skip-Logik
# === Analyse-Loop ===
for i in range(total_chunks):
timestamp = i * CHUNK_SECONDS
if timestamp < next_allowed_time:
continue
segment = data[i * samples_per_chunk : (i + 1) * samples_per_chunk]
if len(segment) == 0:
continue
freqs = fftfreq(len(segment), d=1/rate)
fft_vals = np.abs(fft(segment))
pos_mask = freqs > 0
freqs = freqs[pos_mask]
fft_vals = fft_vals[pos_mask]
peak_freq = freqs[np.argmax(fft_vals)]
peak_mag = np.max(fft_vals)
# Energien normiert
mask_base = (freqs >= TARGET_FREQ - TOLERANCE) & (freqs <= TARGET_FREQ + TOLERANCE)
energy_base = np.mean(fft_vals[mask_base]) / peak_mag
mask_oct = (freqs >= OCTAVE_FREQ - TOLERANCE) & (freqs <= OCTAVE_FREQ + TOLERANCE)
energy_oct = np.mean(fft_vals[mask_oct]) / peak_mag
is_peak_near_target = TARGET_FREQ - TOLERANCE <= peak_freq <= TARGET_FREQ + TOLERANCE
detected = is_peak_near_target and energy_base > THRESHOLD_BASE and energy_oct > THRESHOLD_OCT
if detected:
detections.append((timestamp, round(energy_base, 4), round(energy_oct, 4), round(peak_freq, 2)))
next_allowed_time = timestamp + SKIP_SECONDS
# Ausschnitt extrahieren
start = max(0, int((timestamp - CLIP_PADDING_BEFORE) * rate))
end = min(len(data), int((timestamp + CLIP_PADDING_AFTER) * rate))
clip = (data[start:end] * 32767).astype(np.int16)
base_filename = os.path.join(OUTDIR, f"event_{int(timestamp):04}s")
wav_name = f"{base_filename}.wav"
png_name = f"{base_filename}.png"
# WAV speichern
sf.write(wav_name, clip, rate, subtype="PCM_24")
print(f"🟢 WAV gespeichert: {wav_name} (211Hz: {energy_base:.4f}, 422Hz: {energy_oct:.4f}, Peak: {peak_freq:.1f} Hz)")
# PNG Spektrogramm
plt.figure(figsize=(10, 4))
# Verstärke das Signal künstlich, um schwache Ereignisse im dB-Spektrum sichtbarer zu machen
plt.specgram((clip / 32767.0), NFFT=32768, Fs=rate, noverlap=512, cmap="plasma", vmin=-80, vmax=-35)
plt.title(f"Ereignis @ {timestamp:.2f}s")
plt.xlabel("Zeit (s)")
plt.ylabel("Frequenz (Hz)")
plt.ylim(0, 1000)
plt.colorbar(label="Intensität (dB)")
plt.tight_layout()
plt.savefig(png_name)
plt.close()
print(f"📷 PNG gespeichert: {png_name}")
# === Zusammenfassung ===
print("\n🎯 Erkennungen:")
for ts, eb, eo, pf in detections:
print(f"- {ts:.2f}s | 211Hz: {eb} | 422Hz: {eo} | Peak: {pf:.1f} Hz")
if not detections:
print("→ Keine gültigen Ereignisse erkannt.")