wip
This commit is contained in:
parent
abee103ed9
commit
788416adb6
1 changed files with 43 additions and 38 deletions
|
@ -7,15 +7,15 @@ import matplotlib.pyplot as plt
|
||||||
import soundfile as sf
|
import soundfile as sf
|
||||||
import scipy.signal
|
import scipy.signal
|
||||||
from scipy.fft import fft, fftfreq
|
from scipy.fft import fft, fftfreq
|
||||||
from datetime import datetime
|
|
||||||
import shutil
|
import shutil
|
||||||
|
|
||||||
INPUT_DIR = "chunks"
|
CHUNK_DIR = "chunks"
|
||||||
OUTPUT_DIR = "chunks/processed"
|
PROCESSED_CHUNK_DIR = "chunks/processed"
|
||||||
CHUNK_SECONDS = 1
|
EVENT_DIR = "events"
|
||||||
TOLERANCE = 1
|
SAMPLE_SECONDS = 1
|
||||||
|
TOLERANCE = 2
|
||||||
OVERTONE_TOLERANCE = TOLERANCE * 2
|
OVERTONE_TOLERANCE = TOLERANCE * 2
|
||||||
THRESHOLD_BASE = 0.5
|
THRESHOLD_BASE = 0.
|
||||||
THRESHOLD_OCT = THRESHOLD_BASE / 10
|
THRESHOLD_OCT = THRESHOLD_BASE / 10
|
||||||
CLIP_PADDING_BEFORE = 1
|
CLIP_PADDING_BEFORE = 1
|
||||||
CLIP_PADDING_AFTER = 6
|
CLIP_PADDING_AFTER = 6
|
||||||
|
@ -24,8 +24,29 @@ OVERTONE_FREQ = TARGET_FREQ * 2
|
||||||
NFFT = 32768
|
NFFT = 32768
|
||||||
SKIP_SECONDS = 10
|
SKIP_SECONDS = 10
|
||||||
|
|
||||||
def detect_event(chunk, samplerate):
|
def process_chunk(filename):
|
||||||
freqs, times, Sxx = scipy.signal.spectrogram(chunk, samplerate, nperseg=NFFT)
|
input_path = os.path.join(CHUNK_DIR, filename)
|
||||||
|
print(f"🔍 Verarbeite {input_path}...")
|
||||||
|
|
||||||
|
# Frequenzanalyse und Event-Erkennung
|
||||||
|
data, samplerate = sf.read(input_path)
|
||||||
|
if data.ndim > 1:
|
||||||
|
data = data[:, 0] # nur Kanal 1
|
||||||
|
|
||||||
|
chunk_samples = int(SAMPLE_SECONDS * samplerate)
|
||||||
|
skip_samples = int(SKIP_SECONDS * samplerate)
|
||||||
|
padding_before = int(CLIP_PADDING_BEFORE * samplerate)
|
||||||
|
padding_after = int(CLIP_PADDING_AFTER * samplerate)
|
||||||
|
|
||||||
|
chunk_start_str = os.path.splitext(filename)[0]
|
||||||
|
chunk_start_dt = datetime.datetime.strptime(chunk_start_str, "%Y%m%d-%H%M%S")
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
last_event = -skip_samples
|
||||||
|
while i + chunk_samples <= len(data):
|
||||||
|
clip = data[i:i+chunk_samples]
|
||||||
|
|
||||||
|
freqs, times, Sxx = scipy.signal.spectrogram(clip, samplerate, nperseg=NFFT)
|
||||||
idx_base = np.where((freqs >= TARGET_FREQ - TOLERANCE) & (freqs <= TARGET_FREQ + TOLERANCE))[0]
|
idx_base = np.where((freqs >= TARGET_FREQ - TOLERANCE) & (freqs <= TARGET_FREQ + TOLERANCE))[0]
|
||||||
idx_oct = np.where((freqs >= OVERTONE_FREQ - OVERTONE_TOLERANCE) & (freqs <= OVERTONE_FREQ + OVERTONE_TOLERANCE))[0]
|
idx_oct = np.where((freqs >= OVERTONE_FREQ - OVERTONE_TOLERANCE) & (freqs <= OVERTONE_FREQ + OVERTONE_TOLERANCE))[0]
|
||||||
if len(idx_base) == 0 or len(idx_oct) == 0:
|
if len(idx_base) == 0 or len(idx_oct) == 0:
|
||||||
|
@ -34,45 +55,25 @@ def detect_event(chunk, samplerate):
|
||||||
oct_energy = np.mean(Sxx[idx_oct])
|
oct_energy = np.mean(Sxx[idx_oct])
|
||||||
total_energy = np.mean(Sxx, axis=0).max()
|
total_energy = np.mean(Sxx, axis=0).max()
|
||||||
|
|
||||||
fft_vals = np.abs(fft(chunk))
|
fft_vals = np.abs(fft(clip))
|
||||||
freqs = fftfreq(len(chunk), 1/samplerate)
|
freqs = fftfreq(len(clip), 1/samplerate)
|
||||||
peak_freq = freqs[np.argmax(fft_vals)]
|
peak_freq = freqs[np.argmax(fft_vals)]
|
||||||
is_peak_near_target = TARGET_FREQ - TOLERANCE <= peak_freq <= TARGET_FREQ + TOLERANCE
|
is_peak_near_target = TARGET_FREQ - TOLERANCE <= peak_freq <= TARGET_FREQ + TOLERANCE
|
||||||
|
|
||||||
return is_peak_near_target and base_energy > THRESHOLD_BASE * total_energy and oct_energy > THRESHOLD_OCT * total_energy
|
event_detected = is_peak_near_target and base_energy > THRESHOLD_BASE * total_energy and oct_energy > THRESHOLD_OCT * total_energy
|
||||||
|
|
||||||
def process_chunk(filename):
|
if i - last_event >= skip_samples and event_detected:
|
||||||
input_path = os.path.join(INPUT_DIR, filename)
|
|
||||||
print(f"🔍 Verarbeite {input_path}...")
|
|
||||||
|
|
||||||
# Frequenzanalyse und Event-Erkennung
|
|
||||||
data, samplerate = sf.read(input_path)
|
|
||||||
if data.ndim > 1:
|
|
||||||
data = data[:, 0] # nur Kanal 1
|
|
||||||
|
|
||||||
chunk_samples = int(CHUNK_SECONDS * samplerate)
|
|
||||||
skip_samples = int(SKIP_SECONDS * samplerate)
|
|
||||||
padding_before = int(CLIP_PADDING_BEFORE * samplerate)
|
|
||||||
padding_after = int(CLIP_PADDING_AFTER * samplerate)
|
|
||||||
|
|
||||||
i = 0
|
|
||||||
last_event = -skip_samples
|
|
||||||
while i + chunk_samples <= len(data):
|
|
||||||
chunk = data[i:i+chunk_samples]
|
|
||||||
if i - last_event >= skip_samples and detect_event(chunk, samplerate):
|
|
||||||
clip_start = max(0, i - padding_before)
|
clip_start = max(0, i - padding_before)
|
||||||
clip_end = min(len(data), i + chunk_samples + padding_after)
|
clip_end = min(len(data), i + chunk_samples + padding_after)
|
||||||
clip = data[clip_start:clip_end]
|
clip = data[clip_start:clip_end]
|
||||||
|
|
||||||
chunk_start_str = os.path.splitext(filename)[0]
|
|
||||||
chunk_start_dt = datetime.strptime(chunk_start_str, "%Y%m%d-%H%M%S")
|
|
||||||
event_offset = (i - padding_before) / samplerate
|
event_offset = (i - padding_before) / samplerate
|
||||||
event_time_dt = chunk_start_dt + datetime.timedelta(seconds=event_offset)
|
event_time_dt = chunk_start_dt + datetime.timedelta(seconds=event_offset)
|
||||||
event_time = event_time_dt.strftime("%Y%m%d-%H%M%S")
|
event_time = event_time_dt.strftime("%Y%m%d-%H%M%S")
|
||||||
|
|
||||||
base_name = os.path.splitext(filename)[0]
|
base_name = os.path.splitext(filename)[0]
|
||||||
flac_out = os.path.join(OUTPUT_DIR, f"{base_name}_{event_time}.flac")
|
flac_out = os.path.join(EVENT_DIR, f"{base_name}_{event_time}.flac")
|
||||||
png_out = os.path.join(OUTPUT_DIR, f"{base_name}_{event_time}.png")
|
png_out = os.path.join(EVENT_DIR, f"{base_name}_{event_time}.png")
|
||||||
sf.write(flac_out, clip, samplerate, format='FLAC')
|
sf.write(flac_out, clip, samplerate, format='FLAC')
|
||||||
|
|
||||||
plt.figure()
|
plt.figure()
|
||||||
|
@ -84,24 +85,28 @@ def process_chunk(filename):
|
||||||
plt.savefig(png_out)
|
plt.savefig(png_out)
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
print(f"🎯 Ereignis erkannt bei {event_time}, gespeichert: {flac_out}, {png_out}")
|
print(f"Event: {event_time} peak_freq: {int(peak_freq)} base_energy: {int(base_energy)} oct_energy: {int(oct_energy)} total_energy: {int(total_energy)}")
|
||||||
last_event = i
|
last_event = i
|
||||||
i += skip_samples
|
i += skip_samples
|
||||||
else:
|
else:
|
||||||
i += chunk_samples
|
i += chunk_samples
|
||||||
|
|
||||||
# Datei verschieben
|
# Datei verschieben
|
||||||
output_path = os.path.join(OUTPUT_DIR, filename)
|
output_path = os.path.join(PROCESSED_CHUNK_DIR, filename)
|
||||||
#shutil.move(input_path, output_path)
|
#shutil.move(input_path, output_path)
|
||||||
print(f"✅ Verschoben nach {output_path}")
|
print(f"✅ Verschoben nach {output_path}")
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
os.makedirs(EVENT_DIR, exist_ok=True)
|
||||||
|
os.makedirs(PROCESSED_CHUNK_DIR, exist_ok=True)
|
||||||
|
|
||||||
with concurrent.futures.ProcessPoolExecutor() as executor:
|
for file in os.listdir(CHUNK_DIR):
|
||||||
files = [f for f in os.listdir(INPUT_DIR) if f.endswith(".flac")]
|
if file.endswith(".flac"):
|
||||||
executor.map(process_chunk, files)
|
process_chunk(file)
|
||||||
|
|
||||||
|
# with concurrent.futures.ProcessPoolExecutor() as executor:
|
||||||
|
# files = [f for f in os.listdir(CHUNK_DIR) if f.endswith(".flac")]
|
||||||
|
# executor.map(process_chunk, files)
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
Loading…
Reference in a new issue