bootshorn recording

This commit is contained in:
CroneKorkN 2025-07-11 19:10:49 +02:00
parent 3e5ed906bc
commit 5274639ca3
Signed by: cronekorkn
SSH key fingerprint: SHA256:v0410ZKfuO1QHdgKBsdQNF64xmTxOF8osF1LIqwTcVw
5 changed files with 278 additions and 0 deletions

160
bundles/bootshorn/files/process Executable file
View file

@ -0,0 +1,160 @@
#!/usr/bin/env python3
import os
import datetime
import numpy as np
import matplotlib.pyplot as plt
import soundfile as sf
from scipy.fft import rfft, rfftfreq
import shutil
import traceback
RECORDINGS_DIR = "recordings"
PROCESSED_RECORDINGS_DIR = "recordings/processed"
DETECTIONS_DIR = "events"
DETECT_FREQUENCY = 211 # Hz
DETECT_FREQUENCY_TOLERANCE = 2 # Hz
ADJACENCY_FACTOR = 2 # area to look for the frequency (e.g. 2 means 100Hz to 400Hz for 200Hz detection)
BLOCK_SECONDS = 3 # seconds (longer means more frequency resolution, but less time resolution)
DETECTION_DISTANCE_SECONDS = 30 # seconds (minimum time between detections)
BLOCK_OVERLAP_FACTOR = 0.9 # overlap between blocks (0.2 means 20% overlap)
MIN_SIGNAL_QUALITY = 1000.0 # maximum noise level (relative DB) to consider a detection valid
PLOT_PADDING_START_SECONDS = 2 # seconds (padding before and after the event in the plot)
PLOT_PADDING_END_SECONDS = 3 # seconds (padding before and after the event in the plot)
DETECTION_DISTANCE_BLOCKS = DETECTION_DISTANCE_SECONDS // BLOCK_SECONDS # number of blocks to skip after a detection
DETECT_FREQUENCY_FROM = DETECT_FREQUENCY - DETECT_FREQUENCY_TOLERANCE # Hz
DETECT_FREQUENCY_TO = DETECT_FREQUENCY + DETECT_FREQUENCY_TOLERANCE # Hz
def process_recording(filename):
print('processing', filename)
# get ISO 8601 nanosecond recording date from filename
date_string_from_filename = os.path.splitext(filename)[0]
recording_date = datetime.datetime.strptime(date_string_from_filename, "%Y-%m-%d_%H-%M-%S.%f%z")
# get data and metadata from recording
path = os.path.join(RECORDINGS_DIR, filename)
soundfile = sf.SoundFile(path)
samplerate = soundfile.samplerate
samples_per_block = int(BLOCK_SECONDS * samplerate)
overlapping_samples = int(samples_per_block * BLOCK_OVERLAP_FACTOR)
sample_num = 0
current_event = None
while sample_num < len(soundfile):
soundfile.seek(sample_num)
block = soundfile.read(frames=samples_per_block, dtype='float32', always_2d=False)
if len(block) == 0:
break
# calculate FFT
labels = rfftfreq(len(block), d=1/samplerate)
complex_amplitudes = rfft(block)
amplitudes = np.abs(complex_amplitudes)
# get the frequency with the highest amplitude within the search range
search_amplitudes = amplitudes[(labels >= DETECT_FREQUENCY_FROM/ADJACENCY_FACTOR) & (labels <= DETECT_FREQUENCY_TO*ADJACENCY_FACTOR)]
search_labels = labels[(labels >= DETECT_FREQUENCY_FROM/ADJACENCY_FACTOR) & (labels <= DETECT_FREQUENCY_TO*ADJACENCY_FACTOR)]
max_amplitude = max(search_amplitudes)
max_amplitude_index = np.argmax(search_amplitudes)
max_freq = search_labels[max_amplitude_index]
max_freq_detected = DETECT_FREQUENCY_FROM <= max_freq <= DETECT_FREQUENCY_TO
# calculate signal quality
adjacent_amplitudes = amplitudes[(labels < DETECT_FREQUENCY_FROM) | (labels > DETECT_FREQUENCY_TO)]
signal_quality = max_amplitude/np.mean(adjacent_amplitudes)
good_signal_quality = signal_quality > MIN_SIGNAL_QUALITY
# conclude detection
if (
max_freq_detected and
good_signal_quality
):
block_date = recording_date + datetime.timedelta(seconds=sample_num / samplerate)
# detecting an event
if not current_event:
current_event = {
'start_at': block_date,
'end_at': block_date,
'start_sample': sample_num,
'end_sample': sample_num + samples_per_block,
'start_freq': max_freq,
'end_freq': max_freq,
'max_amplitude': max_amplitude,
}
else:
current_event.update({
'end_at': block_date,
'end_freq': max_freq,
'end_sample': sample_num + samples_per_block,
'max_amplitude': max(max_amplitude, current_event['max_amplitude']),
})
print(f'- {block_date.strftime('%Y-%m-%d %H:%M:%S')}: {max_amplitude:.1f}rDB @ {max_freq:.1f}Hz (signal {signal_quality:.3f}x)')
else:
# not detecting an event
if current_event:
duration = (current_event['end_at'] - current_event['start_at']).total_seconds()
current_event['duration'] = duration
print(f'🔊 {current_event['start_at'].strftime('%Y-%m-%d %H:%M:%S')} ({duration:.1f}s): {current_event['start_freq']:.1f}Hz->{current_event['end_freq']:.1f}Hz @{current_event['max_amplitude']:.0f}rDB')
# read full audio clip again for writing
write_event(current_event=current_event, soundfile=soundfile, samplerate=samplerate)
current_event = None
sample_num += DETECTION_DISTANCE_BLOCKS * samples_per_block
sample_num += samples_per_block - overlapping_samples
# write a spectrogram using the sound from start to end of the event
def write_event(current_event, soundfile, samplerate):
# date and filename
event_date = current_event['start_at'] - datetime.timedelta(seconds=PLOT_PADDING_START_SECONDS)
filename_prefix = event_date.strftime('%Y-%m-%d_%H-%M-%S.%f%z')
# event clip
event_start_sample = current_event['start_sample'] - samplerate * PLOT_PADDING_START_SECONDS
event_end_sample = current_event['end_sample'] + samplerate * PLOT_PADDING_END_SECONDS
total_samples = event_end_sample - event_start_sample
soundfile.seek(event_start_sample)
event_clip = soundfile.read(frames=total_samples, dtype='float32', always_2d=False)
# write flac
flac_path = os.path.join(DETECTIONS_DIR, f"{filename_prefix}.flac")
sf.write(flac_path, event_clip, samplerate, format='FLAC')
# write spectrogram
plt.figure(figsize=(8, 6))
plt.specgram(event_clip, Fs=samplerate, NFFT=samplerate, noverlap=samplerate//2, cmap='inferno', vmin=-100, vmax=-10)
plt.title(f"Bootshorn @{event_date.strftime('%Y-%m-%d %H:%M:%S%z')}")
plt.xlabel(f"Time {current_event['duration']:.1f}s")
plt.ylabel(f"Frequency {current_event['start_freq']:.1f}Hz -> {current_event['end_freq']:.1f}Hz")
plt.colorbar(label="Intensity (rDB)")
plt.ylim(50, 1000)
plt.savefig(os.path.join(DETECTIONS_DIR, f"{filename_prefix}.png"))
plt.close()
def main():
os.makedirs(RECORDINGS_DIR, exist_ok=True)
os.makedirs(PROCESSED_RECORDINGS_DIR, exist_ok=True)
for filename in sorted(os.listdir(RECORDINGS_DIR)):
if filename.endswith(".flac"):
try:
process_recording(filename)
except Exception as e:
print(f"Error processing {filename}: {e}")
# print stacktrace
traceback.print_exc()
if __name__ == "__main__":
main()

23
bundles/bootshorn/files/record Executable file
View file

@ -0,0 +1,23 @@
#!/bin/sh
mkdir -p recordings
while true
do
# get date in ISO 8601 format with nanoseconds
PROGRAMM=$(test $(uname) = "Darwin" && echo "gdate" || echo "date")
DATE=$($PROGRAMM "+%Y-%m-%d_%H-%M-%S.%6N%z")
# record audio using ffmpeg
ffmpeg \
-y \
-f pulse \
-i "alsa_input.usb-HANMUS_USB_AUDIO_24BIT_2I2O_1612310-00.analog-stereo" \
-ac 1 \
-ar 96000 \
-sample_fmt s32 \
-t "3600" \
-c:a flac \
-compression_level 12 \
"recordings/$DATE.flac"
done

View file

@ -0,0 +1,47 @@
# nano /etc/selinux/config
# SELINUX=disabled
# reboot
directories = {
'/opt/bootshorn': {
'owner': 'ckn',
'group': 'ckn',
},
'/opt/bootshorn/recordings': {
'owner': 'ckn',
'group': 'ckn',
},
'/opt/bootshorn/recordings': {
'owner': 'ckn',
'group': 'ckn',
},
'/opt/bootshorn/recordings/processed': {
'owner': 'ckn',
'group': 'ckn',
},
'/opt/bootshorn/events': {
'owner': 'ckn',
'group': 'ckn',
},
}
files = {
'/opt/bootshorn/record': {
'owner': 'ckn',
'group': 'ckn',
'mode': '755',
},
'/opt/bootshorn/process': {
'owner': 'ckn',
'group': 'ckn',
'mode': '755',
},
}
svc_systemd = {
'bootshorn-record.service': {
'needs': {
'file:/opt/bootshorn/record',
},
},
}

View file

@ -0,0 +1,37 @@
defaults = {
'systemd': {
'units': {
'bootshorn-record.service': {
'Unit': {
'Description': 'Bootshorn Recorder',
'After': 'network.target',
},
'Service': {
'User': 'ckn',
'Group': 'ckn',
'Type': 'simple',
'WorkingDirectory': '/opt/bootshorn',
'ExecStart': '/opt/bootshorn/record',
'Restart': 'always',
'RestartSec': 5,
'Environment': {
"XDG_RUNTIME_DIR": "/run/user/1000",
"PULSE_SERVER": "unix:/run/user/1000/pulse/native",
},
},
},
},
},
'systemd-timers': {
'bootshorn-process': {
'command': '/opt/bootshorn/process',
'when': 'minutely',
'working_dir': '/opt/bootshorn',
'user': 'ckn',
'group': 'ckn',
'after': {
'bootshorn-process.service',
},
},
},
}

View file

@ -0,0 +1,11 @@
{
'hostname': '10.0.0.162',
'bundles': [
'bootshorn',
'systemd',
'systemd-timers',
],
'metadata': {
'id': '25c6f3fd-0d32-42c3-aeb3-0147bc3937c7',
},
}